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nected modules of this type. These learn connection weights between themselves which cause the system 
to evolve under a clocked "machine cycle" by a sequence of transitions of attractors within the modules, 
much as a digital computer evolves by transitions of its binary flip-flop states. 

Because intercommunicating modules of the architecture are analytically guaranteed to store and 
recall multiple oscillatory and chaotic attractors, the architecture has served as a framework in which to 
arrange and exploit the special capabilities dynamic attractors. 

Most recently we showed how the architecture can learn to employ selective "attentional" control of 
synchronization to direct the flow of communication and computation within the architecture to solve a 
grammatical inference problem. 

This type of computing architecture and its learning algorithms for computation with oscillatory 
spatial modes is ideal for implementation in optical systems, where electromagnetic oscillations, very 
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Abstract 

This work developed new biological models of cortex and produced artificial neural systems for computa- 
tion which exploited the special capabilities of complex dynamics, and applied them to specific engineering 
problems: handwritten character and word recognition, and grammatical inference. 

In the later stages of the project we succeeded in demonstrating analytically and numerically how an 
unusual cortical "sensory-motor" computing architecture, can be constructed of recurrently interconnected 
associative memory modules. Because intercommunicating modules of the architecture are analytically 
guaranteed to store and recall multiple oscillatory and chaotic attractors, the architecture has served as a 
framework in which to arrange and exploit the special capabilities dynamic attractors. Modules with oscil- 
latory and chaotic attractors were successfully applied to the problem of handwritten character recognition 
in early stages of the work. 

The modules in the larger architecture can learn connection weights between themselves which cause 
the system to evolve under a clocked "machine cycle" by a sequence of transitions of attractors within the 
modules, much as a digital computer evolves by transitions of its binary flip-flop states. The architecture thus 
employs the principle of "computing with attractors" used by macroscopic systems for reliable computation 
in the presence of noise. 

Superior noise immunity was demonstrated for these systems with dynamic attractors over systems with 
static attractors, and synchronization between coupled periodic or chaotic attractors in different modules 
was shown to be important for effecting reliable transitions. We synchronized chaotic attractors for operation 
in the architecture using techniques of coupling developed for secure "broadspectrum" communication by a 
modulated chaotic carrier wave. 

We constructed a system which learns to function as a finite state automaton that perfectly recognizes 
or generates the infinite set of six symbol strings that are defined by a Reber grammar. Even though 
it is constructed from a system of continuous nonlinear ordinary differential equations, the system can 
operate as a discrete-time symbol processing architecture, but with analog input and oscillatory subsymbolic 
representations. 

Most recently we showed how the architecture can learn to employ selective "attentional" control of 
synchronization to direct the flow of communication and computation within the architecture to solve a 
more difficult grammatical inference problem. 

This type of computing architecture and its learning algorithms for computation with oscillatory spatial 
modes is ideal for implementation in optical systems, where electromagnetic oscillations, very high dimen- 
sional modes, and high processing speeds are available. 
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1    Summary of Work Done 

Over the period of this grant, AFOSR-91-0325, entitled "Dynamical Systems, Neural Networks, and Cortical 
Models", we published 10 papers and one book chapter [5, 7, 8, 10, 9, 12, 11, 14, 13, 29, 15]. Fifteen 
conferences were attended where oral or poster presentations were made - including nine invited talks around 
the world in France, Japan, and Austrailia, as detailed in a later section. 

The mathematical foundation for the work is a learning algorithm for recurrent analog neural networks, 
the normal form projection algorithm, developed at Berkeley on this grant. It allows analytically 
guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in 
the same network. We know of no other system with such a guarantee. There are N units of capacity in an 
N unit network. It costs one unit per static attractor, two per Fourier component of each periodic sequence 
(oscillating attractor), and three (or more) per chaotic attractor. There are no spurious attractors. For 
periodic sequences there is a Liapunov function which governs the approach of transient states to stored 
trajectories [12]. 

We showed that the general projection learning rule reduced to a Hebbian outer product rule for storage 
of orthogonal patterns in a biological model of olfactory cortex. We showed further that a model of coupled 
oscillatory neural populations which assumed only minimal coupling justified by known anatomy resulted if 
the oscillating patterns were further restricted to have the phase structure of those observed experimentally 
in olfactory cortex [12]. 

An alternative network for for implementation of the projection algorithm called the "projection network" 
[9] was then developed. This network has 3Ar2 weights instead of N2 + N4, and is more useful for engineering 
applications and for simulations of the biological model. 

These networks, including some with chaotic attractors, were successfully applied to the problem of real 
time handwritten character recognition. This is still the first system we know ofthat can accomplish reliable 
pattern recognition with exclusively chaotic dynamics [7]. 

The biological foundations of the network were deepened when we showed how the higher order weights of 
the biological model could be realized by synaptic clusters on dendrites in the neuropil [5]. We showed as well 
how the Hebbian multiple outer product rule could be decomposed to reveal a term called "competition" that 
could control attractor transitions. It could be realized biologically by a nucleus that summed all network 
activations and fedback a global inhibition to all nodes of the network [5]. 

In the next project, we showed analytically and numerically how a cortical "sensory-motor" computing 
architecture, could be constructed of recurrently interconnected associative memory modules [10]. The 
architecture is such that the larger system is itself a special case of the type of network of the modules, and 
can be analysed with the same tools used to design the subnetwork modules. Because intercommunicating 
modules of the architecture can store and recall multiple oscillatory and chaotic attractors, the architecture 
serves as a framework in which to arrange and exploit the special capabilities dynamic attractors [?]. 

The modules in the larger architecture learn connection weights which cause the system to evolve under a 
clocked "sensory-motor cycle" by a sequence of transitions of attractors within the modules, much as a digital 
computer evolves by transitions of its binary flip-flop attractors. This architecture employs the principle 
of "computing with attractors" used by macroscopic systems for reliable computation in the presence of 
noise. The competition parameter mentioned above is used as a bifurcation parameter to clock the attractor 
transitions of the sensory-motor cycle [10]. 

We then constructed a discrete-time "simple recurrent" or "Elman" network.architecture with oscillatory 
modules. The time steps (machine cycles) of the system hold input and "context" modules clamped at their 
oscillatory attractors while "hidden" modules change state, then clamp hidden states while context modules 
are released to load those states as the new context for the next cycle of input [14]. 

The system learned to function as a finite state automaton that perfectly recognizes, or alternatively 
generates, the infinite set of six symbol strings defined by a Reber grammar. Even though it is constructed 
from a system of continuous nonlinear ordinary differential equations, the system operates as a discrete-time 
symbol processing architecture, but with analog input and oscillatory subsymbolic representations. 

Superior noise immunity was demonstrated for modules with dynamic attractors over modules with static 
attractors, and synchronization between coupled periodic or chaotic attractors in different modules has been 
shown to be important for effecting reliable transitions.  We synchronized Lorenz attractors for operation 



in the architecture using "control of chaos" techniques of coupling developed for secure "broadspectrum" 
communication by a modulated chaotic carrier wave [13]. 

We demonstrated in recent analysis and simulations that sets of canonical equations for the Chua circuit 
can be used in the projection network [13]. We have found attractors in the Chua family which out-perform 
the Lorenz attractor in our handwritten character recognition systems, with fast competitive suppression at 
low values of competitive coupling. 

Most recently we have shown that the Elman architecture can learn to employ selective "attentional" 
control of synchronization to direct the flow of communication and computation within the architecture to 
solve a grammatical inference problem [15]. 

In this architecture, oscillation amplitude codes the information content or activity of a module (unit), 
whereas phase and frequency are used to "softwire" the network. We have shown that only synchronized mod- 
ules communicate by exchanging amplitude information; the activity of non-resonating modules is shown to 
contribute noise. The same hardware and connection matrix can thus subserve many different computations 
and patterns of interaction between modules. 

Synchronization control is modeled as a subset of the hidden modules with ouputs which affect the 
resonant frequencies of other hidden modules. -They learn to perturb these frequencies to control synchrony 
among these modules and direct the flow of computation to effect transitions between subsections of a large 
automaton which the system learns to emulate. The internal crosstalk noise is used to drive the required 
random transitions of the automaton. 

2    Introduction 

The goal of this work is to produce new systems for computation that exploit the special capabilities of com- 
plex dynamics and apply them to specific engineering problems like handwritten character and word recog- 
nition, speech recognition, grammatical inference, adaptive system identification and control, autonomous 
robot navigation, and artificial intelligence. 

Recordings of local field potentials have revealed 40 t« 80 Hz oscillation in vertebrate cortex [24, 25]. 
The amplitude patterns of such oscillations have been shown to predict the olfactory and visual pattern 
recognition responses of a trained animal. There is further evidence that although the oscillatory activity 
appears to be roughly periodic, it is actually chaotic when examined in detail. This preliminary evidence 
suggests that oscillatory or chaotic network modules may form the cortical substrate for many of the sensory, 
motor, and cognitive functions now studied in static networks. 

It remains be shown how networks with more complex dynamics can performs these operations and 
what possible advantages are to be gained by such complexity. Our work has therefore culminated in the 
construction of a parallel distributed processing architecture that is inspired by the structure and dynamics 
of cerebral cortex, and applied it to the problem of grammatical inference. The construction views cortex 
as a set of coupled oscillatory associative memories, and is guided by the principle that attractors must be 
used by macroscopic systems for reliable computation in the presence of noise. 

This system must function reliably in the midst of noise generated by crosstalk from it's own activity. 
Present day digital computers are built of flip-flops which, at the level of their transistors, are continuous 
dissipative dynamical systems with different attractors underlying the symbols we call "0" and "1". In a 
similar manner, the network we have constructed is a symbol processing system, but with analog input and 
oscillatory subsymbolic representations. 

Periodic or nearly periodic (chaotic) variation of a signal introduces a additional degrees of freedom that 
can be exploited in a computational architecture. We are presently investigating the design principle that 
selective control of synchronization, which we consider to be a model of "attention", can be used to control 
program flow in an architecture with dynamic attractors. 

The architecture operates as a thirteen state finite automaton that generates the symbol strings of a Reber 
grammar. It is designed to demonstrate and study the following issues and principles of neural computation: 
(1) Sequential computation with coupled associative memories. (2) Computation with attractors for reliable 
operation in the presence of noise. (3) Discrete time and state symbol processing arising from continuum 
dynamics by bifurcations of attractors. (4) Attention as selective synchronization controling communication 



and temporal program flow. (5) chaotic dynamics in some network modules driving randomn choice of 
attractors in other network modules. 

We believe that this type of computing architecture and its learning algorithms for computation with 
oscillatory spatial modes is ideal for implementation in optical systems, where electromagnetic oscillations, 
very high dimensional modes, and high processing speeds are available. The mathematical expressions for 
optical mode competition are identical to our normal form equations for oscillatory mode competition. 

To advance intuition for theoretical analysis, interactive simulations of the network applications have 
been designed on the SGI 4D35G Personal Iris Graphics Workstation. These allow real time graphic display 
of network dynamics and learning as parameters are varied. 

3    Mathematical Background 

The mathematical foundation for the current project is a learning algorithm for recurrent analog neural 
networks, the normal form projection algorithm, developed at Berkeley on this grant, AFOSR-91-0325. 
It allows analytically guaranteed associative memory storage of analog patterns, continuous sequences, and 
chaotic attractors in the same network. 

3.1    The Projection Algorithm 

A key feature of a net constructed by this algorithm is that the underlying dynamics is explicitly isomorphic 
to any of a class of standard, well understood nonlinear dynamical systems - a "normal form" [27]. This 
control over the dynamics permits the design of important aspects of the network dynamics independent of 
the particular patterns to be stored. Stability, basin geometry, and rates of convergence to attractors can be 
programmed in the standard dynamical system. 

There are N units of capacity in an A: unit network. It costs one unit per static attractor, two per Fourier 
component of each periodic sequence (oscillating attractor), and three (or more) per chaotic attractor. There 
are no spurious attractors. For periodic sequences there is a Liapunov function which governs the approach 
of transient states to stored trajectories [4]. 

We make particular use of the normal form for the Hopf bifurcation [27] configured as a simple recurrent 
competitive k-winner-take-all network with a cubic nonlinearity, shown here in Cartesian coordinate form. 

N N 

^ = ]C Jiil,J ~ Vi 1L Aiiv) (X) 
i=\ j=\ 

This model dynamical system is expressed in diagonalized "overlap" or "memory coordinates" (one memory 
per k nodes). Matrix J is at the disposal of the experimenter: A diagonal matrix with real eigenvalues 
determines static attractors; alternatively, periodic attractors are obtained if J is the real form of a complex 
diagonal matrix with positive real parts a. This causes initial states to move away from the origin, until 
the competitive (negative) cubic terms dominate at some distance, causing the flow to be inward from all 
points beyond. The off-diagonal cubic terms create competition between directions of flow within a spherical 
middle region and thus create multiple attractors and basins. The larger the eigenvalues in J and off-diagonal 
weights in A, the faster the convergence to attractors in this region. For temporal patterns, these nodes 
come in complex conjugate pairs which supply Fourier components for trajectories to be learned. Many 
types of dynamics have been implemented by specializing A and J, including static attractors, limit cycles, 
and chaotic attractors. Chaotic dynamics may be created by specific programming of the interaction of two 
pairs of these nodes. 

The rule for learning desired distributed spatial or spatio-temporal patterns can be shown to be equivalent 
to the operation of "projecting" sets of these nodes into "network" coordinates (the standard basis) using 
the desired vectors as corresponding columns of a transformation matrix P. The differential equations of 
the recurrent network itself may be viewed as linearly transformed or "projected", leading to new recurrent 
network equations with general coupling Tij for the linear terms, and general higher order weights Tijki for 
the cubic terms [1]. The projection learning rule is, 
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and, in the general case, the normal form (1) is projected to become, 
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3.1.1    Chaotic attractors 

We use the well studied family of Chua attractors[30, 20], implemented by the Chua hardware circuit[19], 
to investigate the effectiveness of complex dynamics in this associative memory. This is a physical system 
whose mathematical model is capable of duplicating most experimentally observed chaotic and bifurcation 
phenomena, and which has yielded to a mathematical treatment. 

The Canonical Chua equations give access to a rich variety of dynamics to explore in the system. Recent 
work in the Chua group has revealed that more than 30 chaotic attractors including types similar to those 
that have been studied in the literature, which we have previously employed, such as the Lorenz and Roessler 
attractors, can be obtained from the cannonical equations for the Chua circuit by variation of 7 parameters 
[18]. 

We have demonstrated in recent analysis and simulations that sets of canonical equations for the Chua 
circuit in three dimensional subspace blocks can be used in the projection network. Multiple Chua attractors 
have been created simply by adding off-diagonal normal form competitive terms to couple sets of the three 
Chua equations, 

Case I: RC2 > 0 
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Case II: RC2 < 0 
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Figure 1: Projection Network with 3./V2 weights. The A matrix programs a k-winner-take-all net which 
determines attractors, basins of attraction, and rates of convergence. The columns of P contain the ouptut 
patterns associated to these attractors. The rows of P~l determine category centroids 

The A matrix here has constant off diagonal coupling, and three dimensional blocks of zeros along the 
diagonal to remove the self-damping terms from the subspaces containing the Chua equations. 

If we use the cubic nonlinearity 
f(vi) = a0vi +ait>i, 

then these equations are of the same general form as the Hopf normal form (with a different linear part), 
and they may be projected into network coordinates by the learning rule (2) exactly as shown above to give 
network equations (3) The matrix J now contains the linear coupling terms of the Chua equations in three 
dimensional blocks along the diagonal, and zeros everywhere else. The diagonal blocks JB in J have the 
following form, 

(-a + a0) a 0 
J» = 1 -1 1 

0 -ß -7 

Here the matrix A is as described above, except for the the diagonal slot An — aa\ from the cubic nonlinear 
term aa\v\ of the Chua equations. 

3.2    Projection Network 

An alternative network for for implementation of the projection algorithm is the "projection network" [7]. In 
the projection net, the algebraic projection operation into and out of memory coordinates is done explicitly 
by a set of weights in two feedforward linear networks characterized by weight matrices P~l and P. These 
map inputs into and out of the nodes of the recurrent dynamical network in memory coordinates sandwiched 
between them. This kind of network, with explicit input and output projection maps that are inverses, may 
be considered an "unfolded" version of the purely recurrent networks described above. 

The autoassociative case of this network is formally equivalent to the higher order network realization 
used above as a biological model [3].  All the mathematical results proved for the projection algorithm in 



this case cany over to this new architecture, but more general versions can be trained and applied in novel 
ways. The new network has 3N7 weights instead of N2 -\- N4, and is more useful for engineering applications 
and for simulations of the biological model. The 2N2 input and output weights could be stored off-chip in a 
conventional memory, and the fixed weights of the dynamic normal form network could be implemented in 
analog VLSI for fast analog relaxation. 

This network is shown in figure 1. Input pattern vectors X' are applied as pulses which project onto each 
vector of weights (row of the P~x matrix) on the input to each unit i of the dynamic network to establish an 
activation level t>,- which determines the initial condition for the relaxation dynamics of this network. The 
recurrent weight matrix A of the dynamic network can be chosen so that the unit or predefined subspace 
of units which recieves the largest projection of the input will converge to some state of activity, static or 
dynamic, while all other units are supressed to zero activity. 

Given prototype patterns to be stored, a matrix inversion determines network weights. For nearly or- 
thogonal patterns, matrix transposition is used instead. Unsupervised or supervised incremental learning 
algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be 
implemented. We have well behaved simulations containing multiple static, oscillatory, and chaotic attractors 
in different competing subspaces of the same network. 

3.2.1    Handwritten Character Recognition 

Using the projection architecture, an effective real time handwritten character recognition system with mouse 
input of characters and on line learning has been developed. Various options allow the system to utilize static, 
oscillatory, and/or chaotic attractors (Lorenz, Rossler, Ruelle-Takens, Chua, etc). This is the first system 
we know ofthat can accomplish reliable pattern recognition with exclusively chaotic dynamics [7]. 

Handwritten characters have a natural scale and translation invariant analog representation in terms of 
a sequence of angles that parametrize the pencil trajectory. We remove the writing velocity variation from 
the raw set of (x,y) samples of a digit trajectory by interpolating a new set of N (x,y) points equally spaced 
along the curve. A vector of the sines and cosines of the angles from the horizontal made by the line segment 
emanating from each point then becomes the preprocessed representation of the digit to be learned or input 
to the network for recognition. 

Learning in this system can be as fast as recognition. We have seen that the projection algorithm supplies 
a formula that allows one shot "learning" of prototypes and immediately establishes a basin of attraction 
that determines the generalization response of the network to future inputs. Using a projection network 
architecture with 32 attractors for digits and lower case letters, where the input vector is of dimension N = 
64, with only this one shot learning of prototypes, and very small databases for a single writer at a time, all 
attractors allow roughly 95% correct recognition responses. Unexpected properties have been found in the 
systems utilizing chaotic attractors. Chaotic attractors, for example have different basins of attraction from 
static or periodic attractors. 

In the projection network, or its folded biological version, the chaotic attractors have a basin of attraction 
in the N dimensional state space that constitues a category, just like any other attractor in the system. There 
may be computational advantages to the basins of attraction (categories) produced by chaotic attractors, or 
to the effects their outputs have as inputs to other network modules. 

In the projected or folded network coordinates, the particular distrubuted N dimensional spatio-temporal 
patterns learned for the four components of the chaotically paired oscillatory modes, or the three components 
of the Lorenz system, form a coordinate-specific "encoding" of the chaotic attractor, which may constitute a 
recognizable input to another network, if it falls within some learned basin of attraction. While the details of 
the trajectory of a chaotic attractor in any physical continuous dynamical system are lost in the noise, there 
is still a particular structure to the attractor which is a recognizable "signature". This allows communication 
and "recognition" of chaotic attractors. 

We have found attractors in the Chua family which out-perform the Lorenz attractor in our handwritten 
character recognition systems, with fast competitive suppression at low values of competitive coupling. 



output 

Wnl 

excitatory laye 

«>n2 

inhibitory laye 

Figure 2: Biological subnetwork of excitatory cell populations x,-, inhibitory cell populations t/,-, inputs 6,-, 
adaptive excitatory to excitatory connections Wij, and constant local inhibitory feedback connections g and 
-h. 

3.3    Biological Associative Memory Module 

We have determined a biologically "minimal" model that is intended to assume the least anatomically 
justified coupling sufficient to allow function as an oscillatory associative memory. The network shown in 
figure 2 is meant only as a cartoon of the real biology, which is designed to reveal the general mathematical 
principles and mechanisms by which the actual system might function. 

Long range excitatory to excitatory connections are well known as "associational" connections in olfactory 
cortex[28] and cortico-cortico connections in neocortex. Since our units are neural populations, we can expect 
that some density of full cross-coupling exists in the system[28], and our weights are taken to be the average 
synaptic strengths of these connections. Local inhibitory "interneurons" are a ubiquitous feature of the 
anatomy of cortex [26, 23]. It is unlikely that they make long range connections (> 1 mm) by themselves. 
These connections, and even the debated interconnections between them, are therefore left out of a minimal 
coupling model. The resulting network is a fair cartoon of the well studied circuitry of olfactory (pyriform) 
cortex. Since almost all of cortex has this type of structure in the brains of amphibia and reptiles, our 
super-network of these submodules has the potential to become a reasonable caricature of the full cortical 
architecture in these animals. Although the neocortex of mammals is more complicated, we expect the model 
to provide useful suggestions about the principles of oscillatory computation there as well. 

For an N dimensional system, this minimal coupling structure is described mathematically by the matrix 
T. 

W    -hi 
gl     0 

T = (12) 

W is the N/2 x N/2 matrix of excitatory interconnections, and gl and hi are N/2 x N/2 identity matrices 
multiplied by the positive scalars g, and h. These give the strength of coupling around local inhibitory feed- 
back loops. A state vector is composed of local average cell voltages for N/2 excitatory neuron populations 
x and N/2 inhibitory neuron populations y. Intuitively, since the inhibitory units receive no direct input 
and give no direct output, they act as hidden units that create oscillation for the amplitude patterns stored 
in the excitatory cross-connections W. This may perhaps be viewed as a specific structural addition to a 
recurrent analog higher order network architecture to convert its static attractors to periodic attractors. 
Here the symmetric sigmoid functions of such a network are Taylor expanded up to cubic terms with third 
order weights (quadratic terms are killed by the symmetry). Network equations with the first order coupling 



(12) shown above, plus these higher order excitatory synapses, are shown below, in component form. 

N/2 JV/2 

i,    =    -TXi-hyi + ^WijXj - ^2 WijkiXjXkxi + bi, (13) 
; = 1 jkl=l 

y»    =    -ryi + gxi, (14) 

The competitive (negative) cubic terms of constitute a directly programmable nonlinearity that is indepen- 
dent of the linear terms. Normal form theory shows that these cubics are the essential nonlinear terms 
required to store oscillations, because of the (odd) phase shift symmetry required in the vector field. They 
serve to create multiple periodic attractors by causing the oscillatory modes of the linear term to compete, 
much as the sigmoidal nonlinearity does for static modes in a network with static attractors [1,4]. Intuitively, 
these terms may be thought of as sculpting the maxima of a "saturation" (energy) landscape, into which 
the modes with positive eigenvalues expand, and positioning them to lie in the directions specified by the 
eigenvectors to make them stable. A Liapunov function for this landscape may be explicitly constructed 
in a special polar coordinate system [1, 4]. We use this network directly as our biological model. From a 
physiological point of view, (13) may be considered a model of a biological network which is operating in the 
linear region of the known axonal sigmoid nonlinearities, and contains instead these higher order synaptic 
nonlinearities. 

Adding the higher order weights corresponds, in connectionist language, to increasing the complexity 
of the neural population nodes to become "higher order" or "sigma-pi" units. Clusters of synapses within 
a population unit can locally compute products of the activities on incomming primary connections Wij, 
during higher order Hebbian learning, to establish a weight Wijki (see figure 3). These secondary higher 
order synapses are then used in addition to the synapses Wij, during operation of the overall network, to 
weight the effect of triple products of inputs in the output summation of the population. 

Using only the long range excitatory connections Wij available, some number of the higher order synaptic 
weights Wijki could be realized locally within a neural population in the axo-dendritic interconnection plexus 
known as "neuropil" [3]. Only (N/2)2 of these (N/2)4 possible higher order weights are required in principle 
to approximate the performance of the projection algorithm [6]. The size of our cortical patches is limited 
by this number, and is itself motivation for modularity. 

3.3.1     Hebbian Learning 

The minimal network coupling (12) for T results from the projection learning rule (2) when a specific 
biological form is chosen, in the columns s of P, for the patterns to be stored. Only the higher order weights 
Wijki between excitatory populations shown in the biological module (13) are required for approximate 
pattern storage [6]. This special complex form for P' and the corresponding asymptotic solutions Xs (t) 
established are, 

\x*\ei!'*+iu'* 
P' = 

LvTi 
x'\e'"* 

x'W 
X'(t) = 

. >/£!*• le iei+iu't (15) 

The phase 6x,6y is constant over the components of each kind of neural population x and y, and differs 
only between them. This is basically what is observed in the olfactory bulb (primary olfactory cortex) and 
prepyriform cortex[3]. The phase of inhibitory components 6y in the bulb lags the phase of the excitatory 
components 6X by approximately 90 degrees. 

A Hebbian learning rule may be derived from the projection learning rule which allows a network to 
learn its attractor categories by local self organization of synapses and synaptic clusters according to pre 
and post synaptic activities experienced during external input forcing. For orthonormal static patterns xs, 
P-1 = PT, and the projection rule for the W matrix reduces to an outer product, or "Hebb" rule, and the 
projection for the higher order weights becomes a multiple outer product rule: 

N/2 N/2 

Wi;-= £>»*?*;  ,      Wijt^cSijSti-d^x'ix'jxix',. (16) 
s s = l 
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Figure 3: Neural population subnetwork acting as a sigma-pi unit. It uses secondary higher order synaptic 
weights Wijki on products of the activities of incoming primary connections Wij, and receives a global 
inhibitory bias. 

When the Hebbian learning rule (16) is used, the higher order weights Wijki of the network model (13) 
can be decomposed so that (13) becomes, 

JV/2 JV/2 AT/2 

ii — -TXi - hyi+'^2 WijXj + d ^ WijkiXjXkXi - cx{ ^ x? + 6; 
j = l jkl=l j = l 

(17) 

where Wijki comes from the multiple outer product in (16), and —cz,- Ylj=i x] comes from the cSijSjk term 
in (16). This single weight negative term corresponds to a shunting inhibitory bias which depends on the 
global excitatory activity of the network. "Shunting" here means multiplied by the current average cell 
voltage a;,- of population i. This is an input which is identical for all excitatory neural populations and could 
be calculated by a single node of the network which receives input from all excitatory populations, as shown 
in figure 3. Such a node might correspond to one of the nuclei which lie below the prepyriform cortex. These 
send and receive the diffuse projections required to and from prepyriform cortex. The constants c and doteq. 
(17) give the magnitude of the inhibitory bias c and the average higher order weight d. These constants are 
derived from entries in the normal form matrix A, and, as we will discuss below, c > d guarantees stability 
of all stored patterns. The greater the bias c relative to d, the greater the "competition" between stored 
patterns, the more robust is the stability of the present attractor, and vice versa. This is the mechanism 
employed later in the biological sensory-motor architecture for central control of attractor transitions within 
modules. 

4    Normal Form Associative Memory Modules 

As described above, the network modules of the cortical model were developed previously as models of 
olfactory cortex, or caricatures of "patches"of neocortex [2, 5, 3]. A particular module is formed by a set 
of neural populations whose interconnections also contain higher order synapses. These synapses determine 
attractors for that subnetwork independent of other subnetworks. Each module assumes only minimal 
internal coupling of excitatory and inhibitory neural populations justified by known anatomy in prepyriform 
cortex, as described earlier. 
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Figure 4: Energy landscape of amplitudes of binary oscillatory unit with no external input. For low levels 
of competition, there is a broad circular valley. With high levels of competition, there is a deep potential 
wells on each axis. Phase-locked external inputs simply add a linear tilt to the landscape which will shift 
a single attractor accross the circular valley at low competition, but can't move it from a potential well at 
high competition. 

In this biological model, the attractors within modules are distributed patterns of activity like those 
observed experimentally [24]. However, the network is equivalent to the architecture of modules in "normal 
form" as described above, and may easily be designed, simulated, and theoretically evaluated in these 
coordinates. 

By analyzing the network in the polar version of the normal form coordinates, the amplitude and phase 
dynamics have a particularly simple interaction. When the input to a module is synchronized with its 
intrinsic oscillation, the amplitudes of the periodic activity may be considered separately from the phase 
rotation, and the network of the module may be viewed as a static network with these amplitudes as its 
activity. We have further shown analytically that the network modules we have constructed have a strong 
tendency to synchronize as required. An attractor in these winner-take-all normal form cordinates is one 
oscillator at its maximum amplitude, with the others near zero amplitude. 

For the oscillating networks of the present model, we use the normal form for the Hopf bifurcation, which 
characterizes the genesis of oscillation, and make particular use of it to control bifurcations. A bifurcation 
is a discontinuous (topologically singular) change in the phase portrait of possibilities for the continuous 
dynamical behavior of a system (such as the appearance or dissappearance of an attractor) that occurs as a 
bifurcation parameter reaches a critical value. It is the bifurcation in the vector field of a network module 
from one to many attractors that effects the essential digitization of the system in time and state, as we will 
see below. 

4.1    A Binary Oscillatory Unit 

To illustrate the behavior of individual network modules, we examine a binary (two attractor) module; the 
behavior of modules with more than two attractors is similar. Such a unit is defined in polar normal form 
coordinates by the following equations of the Hopf normal form: 

ru    =    Uiru - cr3
u + (d - bsin{ueiockt))rurli + ^ w^Ij cos(9j - 6U) 

i 

hi    =    mroi - cr%{ + (d- 6sm(wc,0(;jfc<))roiri,- + ^ w-Ij cos(9j - 60i) 
j 

hi    -    w,- +^ «;*(/,•/nOsin^-fli,-) 
3 

Ooi    =    w,- + ]P w'jilj/roi)sm(6j - 0oi) 
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The clocked parameter bsin(u)ciockt) is used to control attractor transitions in the Elman architecture to 
be discussed later. It has lower frequency (1/10) than the intrinsic frequency of the unit w,-. 

When the oscillators are sychronized with the input, 9j — 6u = 0, and the phase terms cos(9j — 6u) = 
cos(0) = 1 dissappear.   This leaves the amplitude equations ru and fo,- with static inputs £\ wfilj and 

Examination of the phase equations shows that a unit has a strong tendency to synchronize with an input 
of similar frequency. Defining the phase difference, <j> = 60 — 0i = 60 —ujt between a unit $o and it's input 
6j we can write a differential equation <$> for the phase difference <j> , 

^ = w0-w/ + (ry/r0)sin(-^)  ,    so ,      4> = -sm_1[(r0/r/)(w/ - w0)] 

There is an attractor <j> at zero phase difference <j> = $o — @i = 0, and a repellor at 180 degrees in the 
phase difference equations <f> for either side of a unit driven by an input of the same frequency, uj — WQ = 0. 
In simulations, the interconnected network of these units to be described below synchronizes robustly within 
a few cycles following a perturbation. 

If the frequencies of attractors in some modules of the architecture are randomly dispersed by a significant 
amount, w/—o>o ^ 0, phase-lags appear first, then synchronization is lost in those units. An oscillating module 
therefore acts as a band pass filter for oscillatory inputs. 

Thus we have network modules which emulate static network units in their amplitude activity when fully 
phase-locked to their input. Amplitude information is transmitted between modules, with an oscillatory 
carrier. 

4.2    Attractor Transitions by Bifurcation 

For fixed values of the competition, in a completely synchronized system, the internal amplitude dynamics 
define a gradient dynamical system for a fourth order energy function. Figures 4a and 4b show the energy 
landscape with no external input for high and low levels of competition respectively. External inputs that 
are phase-locked to the module's intrinsic oscillation simply add a linear tilt to the landscape. 

For low levels of competition, there is a broad circular valley. When tilted by external input, there is a 
unique equilibrium that is determined by the bias in tilt along one axis over the other. Thinking of ru as 
the "acitivity" of the unit, this acitivity becomes a monotonically increasing function of input. The module 
behaves as an analog connectionist unit whose transfer function can be approximated by a sigmoid. We refer 
to this as the "analog" mode of operation of the module. 

With high levels of competition, the unit will behave as a binary (bistable) digital flip-flop element. There 
are two deep potential wells, one on each axis. Hence the final steady state of the unit is determined by 
which basin of attraction contains the initial state of the system in the analog mode of operation before 
competition is increased by the clock. This state changes little under the influence of external input: a tilt 
will move the location of the attractor basins only slightly. Hence the module performs a winner-take-all 
choice on the coordinates of its initial state and maintains that choice independent of external input. This 
is the "digital" or "quantized" mode of operation of a module. We use this bifurcation in the behavior of 
the modules to control information flow within the network to be described below. 

5    Sensory-Motor Architecture 

As a benchmark for the capabilities of the system, and to create a point of contact to standard network 
architectures, we have shown how a discrete-time "simple recurrent" or "Elman" network architecture [21] can 
be constructed from recurrently connected oscillatory associative memory modules described by continuous 
nonlinear ordinary differential equations [14, 11]. The system learns to function as a finite state automaton 
that recognizes or generates the infinite set of six symbol strings that are defined by a Reber grammar. 

The time steps (sensory-motor cycles) of the system are implemented by rhythmic variation (clocking) of 
the competition bifurcation parameter. This holds input and "context" (sensory) modules clamped at their 
attractors while 'hidden and output (motor) modules change state, then clamps hidden and output states 
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Figure 5: Elman architecture: The input and output modules each consist of a single associative memory 
module with six oscillatory attractors, one for each of the six symbols in the grammar. The hidden and 
context modules consist of binary "units" composed of two oscillatory attractors. Dotted lines enclose the 
two "sensory" and "motor" sets of modules which are allowed to change attractors at alternate peaks of the 
machine cycle. 

while context modules are released to load those states as the new context for the next cycle of input. The 
dotted lines of figure 5 show these two sets of modules. 

We use two types of modules in implementing the Elman network architecture. The input and output 
layer each consist of a single associative memory module with six oscillatory attractors (six competing 
oscillatory modes), one for each of the six possible symbols in the grammar. The hidden and context layers 
consist of binary "units" composed of a two oscillator module with internal competition. We think of one 
mode within the unit as representing "1" and the other as representing "0" (see figure 5). 

The network approximates a static network in its amplitude activity when fully phase-locked. Amplitude 
information is transmitted between modules, with an oscillatory carrier. If the frequencies of attractors in 
the architecture are randomly dispersed by a significant amount phase-lags appear, then synchronization is 
lost and improper transitions begin to occur. 

It is the bifurcation in the phase portrait of a module from one to many attractors that contributes 
the essential digitalization of the system in time and state. The analog mode for a module allows input to 
prepare its initial state for the binary decision between attractor basins that occurs as competition rises and 
the double potential well appears. 

The feedback between sensory and motor modules is effectively cut when one set is clamped at high 
competition. The system thus operates in discrete time by alternating sets of transitions between finite sets 
of attracting states. This kind of alternate clocking and buffering (clamping) of some states while other 
states relax is essential to the reliable operation of digital architectures, as it is in our modules. The clock 
input on a flip-flop clamps it's state until its signal inputs have settled and the choice of transition is made 
with the proper information available. In our simulations, if we clock all modules to transition at once, the 
programmed transitions lose stability, and we get transitions to unprogrammed fixed points and simple limit 
cycles for the whole system. This is a strong justification for the use of clamped attractors and clocked 
cycles. 

5.1    Training 

During training, the hidden module units are left at zero or negative competition after clamping, of input 
and context. They are thus free to take analog values on a given time step so that a real valued error can 
be defined and backpropagation may be used to train the system. 

If the context units are clamped with high competition, they are essentially "quantized" to take on 
only their 0 or 1 attractor values, and the feedback connections from the hidden units cannot affect them. 
While Giles, et. al. generally do not quantize their units until the end of training to extract a finite state 

13 



automaton, they and others [31] find that quantizing of the context units during training like this increases 
learning time but produces a network with perfect performance. 

We also have the option of leaving the competition within the context units at intermediate levels to allow 
them to take on analog values in a variable sized neighborhood of the 0 or 1 attractors. Since our system 
is recurrently connected by an identity map from hidden to context units, it will relax to some equilibrium 
determined by the impact of the context units and the clamped input on the hidden unit states, and the 
effect of the feedback from those hidden states on the context states. We can thus further explore the impact 
on learning of this range of operation between discrete time and space automaton and continuous analog 
recurrent network. 

The ability to operate as an finite automaton with oscillatory/chaotic "states" is thus an important 
benchmark for this architecture, but only a subset of its capabilities. At low to zero competition, the 
supra-system reverts to one large continuous dynamical system. We expect that this kind of variation of 
the operational regime, especially with chaotic attractors inside the modules, though unreliable for habitual 
behaviors, may nontheless be very useful in other areas such as the search process of reinforcement learning. 

5.2 Synchronization, Noise, and Intermodule Communication 

An important element of intra-cortical communication in the brain, and between modules in this architecture, 
is the ability of a module to detect and respond to the proper input signal from a particular module, when 
inputs from other modules which is irrelevant to the present computation are contributing cross-talk and 
noise. This is smilar to the problem of coding messages in a computer architecture like the Connection 
Machine so that they can be picked up from the common communication buss line by the proper receiving 
module. We are investigating the hypothesis that sychronization control is one way the brain can solve this 
coding problem. 

Because communication between modules in the architecture is by continuous time-varying analog vectors, 
the process is more one of signal detection and pattern recognition by the modules of their inputs than it 
is "message passing". This is why the demonstrated performance of the modules in handwritten character 
recognition is significant, and why we expect there are important possibilities in the architecture for the 
kinds of chaotic signal processing studied by Chua [22]. 

We have shown that the dynamic attractors - oscillatory or chaotic - within the modules of this ar- 
chitecture must synchronize to effectively communicate information and produce reliable transitions [10]. 
In simulations, we have synchronized lorenz and Chua attractors for operation in the architecture using 
techniques of coupling developed by Chua [22] for secure "broadspectrum" communication by a modulated 
chaotic carrier wave [11, 13]. 

We have also shown in these modules a superior stability of oscillatory attractors over static attractors 
in the presence of noise perturbations with the 1/f spectral character of the noise found experimentally by 
Freeman in the brain [10]. This may be one reason why the brain uses dynamic attractors. An oscillatory 
attractor acts like a a bandpass filter and is effectively immune to the many slower macroscopic bias pertur- 
bations in the theta-alpha-beta range (3 - 25 Hz) below its 40 -80 Hz passband, and the more microscopic 
perturbations of single neuron spikes in the 100 - 1000 Hz range. In an environment with this spectrum of 
perturbation, modules with static attractors cannot operate reliably. 

5.3 Attentional Control of Synchrony 

The network architecture, shown in figure 6, has been designed so that amplitude codes the information 
content or activity of a module, whereas phase and frequency are used to "softwire" the network. An 
oscillatory network module has a passband outside of which it will not synchronize with an oscillatory 
input. Modules can therefore easily be desynchronized by perturbing their resonant frequencies. They can 
also be desynchronized by anti-phase inputs as in the models of Koenig, et. al. [?] Furthermore, only 
synchronized modules communicate by exchanging amplitude information; the activity of non-resonating 
modules contributes incoherant crosstalk or noise. 

The flow of communication between modules can thus be controled by controlling synchrony. By changing 
the intrinsic frequency of modules in a patterned way, the effective connectivity of the network is changed. 
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Figure 6: Synchronization control architecture: The input and output modules show the symbol "T" as 
a distributed attractor pattern. The binary modules of the hidden and context layers show oscillatory 
attractors in winner-take-all normal form cordinates where one oscillator at its maximum amplitude, with 
the others near zero amplitude. Activity levels oscillate up and down through the plane of the paper. Dotted 
lines show control outputs from the synchronization control modules. Control unit two is at the one attractor 
(right side of the square active) and the hidden units coding for states of subgraph two are in synchrony 
with the input and output modules. Here in midcycle, all modules are clamped at their attractors. 

The same hardware and connection matrix can thus subserve many different computations and patterns of 
interaction between modules without crosstalk problems. 

The crosstalk noise is actually essential to the function of the system. It serves as the noise source 
for making random choices of output symbols and automaton state transitions in this architecture during 
reinforcement learning and normal operation after learning. In cortex there is an issue as to what may 
constitute a source of randomness of sufficient magnitude to perturb the behavior of the large ensemble of 
neurons involved in neural activity at the cortical network level. It does not seem likely that the well known 
molecular level of fluctuations which is easily averaged within a single neuron or small group of neurons 
can do the job. The architecture here models the hypothesis that deterministic chaos in the macroscopic 
dynamics of a network of neurons, which is the same order of magnitude as the coherant activity, can serve 
this purpose. 

In a set of modules which is desynchronized by perturbing the resonant frequencies of the group, coherance 
is lost and "random" phase relations result. The character of the model time traces is now irregular as seen 
in real neural ensemble activity. The behavior of the time traces in different modules of the architecture 
is similar to the temporary appearance and switching of synchronization between cortical areas as seen in 
observations of cortical processing during sensory/motor tasks in monkeys and humans [17]. The detailed 
structure of this apparently chaotic signal and its further use in network learning and operation are currently 
under investigation. 

5.4    Grammatical Inference 

We studied the use of these capabilities in the grammatical inference problem by constructing and learning 
the larger fifteen hidden unit (module) automata studied by Cleermans, et al. This consists of two subgraphs 
each of which was the automaton learned previously in work described above, and shown in figure 7. Strings 
of this grammar can contain long embedded sequences of the smaller grammar before the final transition 
distinguishing which branch you are on appears. These transitions of this grammar were challenging to learn 
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Subgraph 1 

Subgraph 2 

Figure 7: Graph diagram of the automaton emulated by the network to generate the symbol strings of a 
grammar. It is composed of two subgraphs joined by a start/end state. At each node (network state), one 
of two symbols (output module attractors) is chosen at random (by crosstalk noise) and fedback as input to 
the network to direct the next transition of state as shown by the arrows of the diagram. 

because of the embedding. Cleermans et al had to alter the transition probabilities within the two subgraphs 
so that the backpropagation algorithm could distinguish the branches during learning. 

We solved this learning problem by introducing a control of program flow by selective synchronization 
[15, 16]. The controler itself is modeled in this architecture as a special set of hidden modules with ouputs 
that affect the resonant frequencies of the other hidden modules or supply an anti-phase input, as shown in 
figure 6. 

These enforce a segregation of the hidden module code for the subgraph states during training so that 
different sets of synchronized modules learn to code for each subgraph with the other modules desynchronized 
by frequency perturbation. The entire automaton is learned with its additional entry and exit hidden module 
states and with these special hidden modules. 

Transitions in the system from states in one subautomaton to the other are made by "attending" to 
the corresponding set of nodes in the hidden and context layers. This switching of the focus of attention is 
accomplished by changing the patterns of synchronization within the network. 

Varying levels of intramodule competition control the large scale direction of information flow between 
layers of the architecture. To direct information flow on a finer scale, the "attention" mechanism selects a 
subset of modules within each layer whose output is effective in driving the behavior of the system. 

The system in operation is made to jump from states in one subautomaton to the other by desynchronizing 
the proper subset of hidden modules. The possibilities for transition of the system are thus be controled by 
selective synchronization. This control itself is learned by the special hidden units whose output controls 
the synchrony of these subsets. During training, the control modules learn to respond to the proper input 
symbol and context to direct the flow of computation to effect the difficult transitions between subgraphs. 
Viewing the automaton above as a behavioral program, the control of synchrony constitutes a control of the 
program flow into its subprograms (the subgraphs). 

In future work we will investigate the possibilities for self-organization of the patterns of synchrony and 
spatially segregated coding in the hidden layer during learning. We will explore the use of lateral connections 
between hidden units to cause competition for synchrony as has been done by Koenig et alto see how local 
spatially segregated coding can be self-organized during learning. Lateral neighborhood connections between 
hidden units which effect synchrony of neighboring units have been sucessfully implemented in simulations, 
and certain sections of a large number of hidden units will self-organize into synchrony and take part in the 
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learning of certain subgraphs of the automaton. 

6 Computing Resources 

Our analytic approach to understanding these networks relies heavily on geometric visualization of network 
learning and operation in prefered coordinate systems. The computer graphic capabilities of the Silicon 
Graphics Personal Iris 4D35G workstation purchased by the grant has been invaluable in enabling us to 
design interactive simulations with graphical display of these geometric representations in order to enhance 
our intuition and generate new theoretical insights. 

We have employed the workstation as a system for simulation and graphic display of network dynamics, 
where we can vary network parameters (most notably bifurcation parameters) and alter network dynamics 
in real time. With this capability, we were able to rapidly explore regions of the parameter space, and find 
where to concentrate our numerical and analytical efforts. 
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Invited Speaker, Workshop on Complex Dynamics in Neural Networks, Vietri, Italy, June 
Analysis and Modeling of Neural Systems 2, U.C. Berkeley, Ca., July 
Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 

1992 

Invited speaker, 2nd Int. Conf. on Fuzzy Logic and Neural Networks, Iizuka, Japan, July 
Computation and Neural Systems *92, San Francisco, Ca. July 
Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 

1993 

Invited lecture, RICOH Palo Alto Research Center - January 
Invited speaker. International Workshop - Self-Organization, Learning and Dynamics in Neural Networks, 
Toulouse, France, March 
Invited lecture, Computer Science Dept., University of New South Wales, Sidney, Austrailia, June 
Invited lecture, Computer Science Dept., University of Queensland, Brisbane, Austrailia, June 
Invited speaker. Midwest Dynamics Conference, University of California at Berkeley, Berkeley, Ca., 
October 
Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 

*talk or poster given at all conferences listed 
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